- publishing free software manuals
The PostgreSQL 9.0 Reference Manual - Volume 3 - Server Administration Guide
by The PostgreSQL Global Development Group
Paperback (6"x9"), 274 pages
ISBN 9781906966072
RRP £9.95 ($14.95)

Sales of this book support the PostgreSQL project! Get a printed copy>>>

9.1.2 Recovering Disk Space

In PostgreSQL, an UPDATE or DELETE of a row does not immediately remove the old version of the row. This approach is necessary to gain the benefits of multiversion concurrency control (MVCC, see Volume 1A: 11 Concurrency Control): the row version must not be deleted while it is still potentially visible to other transactions. But eventually, an outdated or deleted row version is no longer of interest to any transaction. The space it occupies must then be reclaimed for reuse by new rows, to avoid unbounded growth of disk space requirements. This is done by running VACUUM.

The standard form of VACUUM removes dead row versions in tables and indexes and marks the space available for future reuse. However, it will not return the space to the operating system, except in the special case where one or more pages at the end of a table become entirely free and an exclusive table lock can be easily obtained. In contrast, VACUUM FULL actively compacts tables by writing a complete new version of the table file with no dead space. This minimizes the size of the table, but can take a long time. It also requires extra disk space for the new copy of the table, until the operation completes.

The usual goal of routine vacuuming is to do standard VACUUMs often enough to avoid needing VACUUM FULL. The autovacuum daemon attempts to work this way, and in fact will never issue VACUUM FULL. In this approach, the idea is not to keep tables at their minimum size, but to maintain steady-state usage of disk space: each table occupies space equivalent to its minimum size plus however much space gets used up between vacuumings. Although VACUUM FULL can be used to shrink a table back to its minimum size and return the disk space to the operating system, there is not much point in this if the table will just grow again in the future. Thus, moderately-frequent standard VACUUM runs are a better approach than infrequent VACUUM FULL runs for maintaining heavily-updated tables.

Some administrators prefer to schedule vacuuming themselves, for example doing all the work at night when load is low. The difficulty with doing vacuuming according to a fixed schedule is that if a table has an unexpected spike in update activity, it may get bloated to the point that VACUUM FULL is really necessary to reclaim space. Using the autovacuum daemon alleviates this problem, since the daemon schedules vacuuming dynamically in response to update activity. It is unwise to disable the daemon completely unless you have an extremely predictable workload. One possible compromise is to set the daemon's parameters so that it will only react to unusually heavy update activity, thus keeping things from getting out of hand, while scheduled VACUUMs are expected to do the bulk of the work when the load is typical.

For those not using autovacuum, a typical approach is to schedule a database-wide VACUUM once a day during a low-usage period, supplemented by more frequent vacuuming of heavily-updated tables as necessary. (Some installations with extremely high update rates vacuum their busiest tables as often as once every few minutes.) If you have multiple databases in a cluster, don't forget to VACUUM each one; the program vacuumdb might be helpful.

Tip: Plain VACUUM may not be satisfactory when a table contains large numbers of dead row versions as a result of massive update or delete activity. If you have such a table and you need to reclaim the excess disk space it occupies, you will need to use VACUUM FULL, or alternatively CLUSTER or one of the table-rewriting variants of ALTER TABLE. These commands rewrite an entire new copy of the table and build new indexes for it. All these options require exclusive lock. Note that they also temporarily use extra disk space approximately equal to the size of the table, since the old copies of the table and indexes can't be released until the new ones are complete.

Tip: If you have a table whose entire contents are deleted on a periodic basis, consider doing it with TRUNCATE rather than using DELETE followed by VACUUM. TRUNCATE removes the entire content of the table immediately, without requiring a subsequent VACUUM or VACUUM FULL to reclaim the now-unused disk space. The disadvantage is that strict MVCC semantics are violated.

ISBN 9781906966072The PostgreSQL 9.0 Reference Manual - Volume 3 - Server Administration GuideSee the print edition