- publishing free software manuals
The PostgreSQL 9.0 Reference Manual - Volume 1A - SQL Language Reference
by The PostgreSQL Global Development Group
Paperback (6"x9"), 454 pages
ISBN 9781906966041
RRP £14.95 ($19.95)

Sales of this book support the PostgreSQL project! Get a printed copy>>>

11.2.2 Serializable Isolation Level

The Serializable isolation level provides the strictest transaction isolation. This level emulates serial transaction execution, as if transactions had been executed one after another, serially, rather than concurrently. However, applications using this level must be prepared to retry transactions due to serialization failures.

When a transaction is using the serializable level, a SELECT query only sees data committed before the transaction began; it never sees either uncommitted data or changes committed during transaction execution by concurrent transactions. (However, the query does see the effects of previous updates executed within its own transaction, even though they are not yet committed.) This is different from Read Committed in that a query in a serializable transaction sees a snapshot as of the start of the transaction, not as of the start of the current query within the transaction. Thus, successive SELECT commands within a single transaction see the same data, i.e., they do not see changes made by other transactions that committed after their own transaction started. (This behavior can be ideal for reporting applications.)

UPDATE, DELETE, SELECT FOR UPDATE, and SELECT FOR SHARE commands behave the same as SELECT in terms of searching for target rows: they will only find target rows that were committed as of the transaction start time. However, such a target row might have already been updated (or deleted or locked) by another concurrent transaction by the time it is found. In this case, the serializable transaction will wait for the first updating transaction to commit or roll back (if it is still in progress). If the first updater rolls back, then its effects are negated and the serializable transaction can proceed with updating the originally found row. But if the first updater commits (and actually updated or deleted the row, not just locked it) then the serializable transaction will be rolled back with the message

ERROR:  could not serialize access due to concurrent update

because a serializable transaction cannot modify or lock rows changed by other transactions after the serializable transaction began.

When an application receives this error message, it should abort the current transaction and retry the whole transaction from the beginning. The second time through, the transaction will see the previously-committed change as part of its initial view of the database, so there is no logical conflict in using the new version of the row as the starting point for the new transaction's update.

Note that only updating transactions might need to be retried; read-only transactions will never have serialization conflicts.

The Serializable mode provides a rigorous guarantee that each transaction sees a wholly consistent view of the database. However, the application has to be prepared to retry transactions when concurrent updates make it impossible to sustain the illusion of serial execution. Since the cost of redoing complex transactions can be significant, serializable mode is recommended only when updating transactions contain logic sufficiently complex that they might give wrong answers in Read Committed mode. Most commonly, Serializable mode is necessary when a transaction executes several successive commands that must see identical views of the database.

ISBN 9781906966041The PostgreSQL 9.0 Reference Manual - Volume 1A - SQL Language ReferenceSee the print edition