- publishing free software manuals
The PostgreSQL 9.0 Reference Manual - Volume 1A - SQL Language Reference
by The PostgreSQL Global Development Group
Paperback (6"x9"), 454 pages
ISBN 9781906966041
RRP £14.95 ($19.95)

Sales of this book support the PostgreSQL project! Get a printed copy>>>

11.2.1 Read Committed Isolation Level

Read Committed is the default isolation level in PostgreSQL. When a transaction uses this isolation level, a SELECT query (without a FOR UPDATE/SHARE clause) sees only data committed before the query began; it never sees either uncommitted data or changes committed during query execution by concurrent transactions. In effect, a SELECT query sees a snapshot of the database as of the instant the query begins to run. However, SELECT does see the effects of previous updates executed within its own transaction, even though they are not yet committed. Also note that two successive SELECT commands can see different data, even though they are within a single transaction, if other transactions commit changes during execution of the first SELECT.

UPDATE, DELETE, SELECT FOR UPDATE, and SELECT FOR SHARE commands behave the same as SELECT in terms of searching for target rows: they will only find target rows that were committed as of the command start time. However, such a target row might have already been updated (or deleted or locked) by another concurrent transaction by the time it is found. In this case, the would-be updater will wait for the first updating transaction to commit or roll back (if it is still in progress). If the first updater rolls back, then its effects are negated and the second updater can proceed with updating the originally found row. If the first updater commits, the second updater will ignore the row if the first updater deleted it, otherwise it will attempt to apply its operation to the updated version of the row. The search condition of the command (the WHERE clause) is re-evaluated to see if the updated version of the row still matches the search condition. If so, the second updater proceeds with its operation using the updated version of the row. In the case of SELECT FOR UPDATE and SELECT FOR SHARE, this means it is the updated version of the row that is locked and returned to the client.

Because of the above rule, it is possible for an updating command to see an inconsistent snapshot: it can see the effects of concurrent updating commands on the same rows it is trying to update, but it does not see effects of those commands on other rows in the database. This behavior makes Read Committed mode unsuitable for commands that involve complex search conditions; however, it is just right for simpler cases. For example, consider updating bank balances with transactions like:

UPDATE accounts SET balance = balance + 100.00 WHERE acctnum 
  = 12345;
UPDATE accounts SET balance = balance - 100.00 WHERE acctnum 
  = 7534;

If two such transactions concurrently try to change the balance of account 12345, we clearly want the second transaction to start with the updated version of the account's row. Because each command is affecting only a predetermined row, letting it see the updated version of the row does not create any troublesome inconsistency.

More complex usage can produce undesirable results in Read Committed mode. For example, consider a DELETE command operating on data that is being both added and removed from its restriction criteria by another command, e.g., assume website is a two-row table with website.hits equaling 9 and 10:

UPDATE website SET hits = hits + 1;
-- run from another session:  DELETE FROM website WHERE hits 
  = 10;

The DELETE will have no effect even though there is a website.hits = 10 row before and after the UPDATE. This occurs because the pre-update row value 9 is skipped, and when the UPDATE completes and DELETE obtains a lock, the new row value is no longer 10 but 11, which no longer matches the criteria.

Because Read Committed mode starts each command with a new snapshot that includes all transactions committed up to that instant, subsequent commands in the same transaction will see the effects of the committed concurrent transaction in any case. The point at issue above is whether or not a single command sees an absolutely consistent view of the database.

The partial transaction isolation provided by Read Committed mode is adequate for many applications, and this mode is fast and simple to use; however, it is not sufficient for all cases. Applications that do complex queries and updates might require a more rigorously consistent view of the database than Read Committed mode provides.

ISBN 9781906966041The PostgreSQL 9.0 Reference Manual - Volume 1A - SQL Language ReferenceSee the print edition