- publishing free software manuals
The PostgreSQL 9.0 Reference Manual - Volume 1A - SQL Language Reference
by The PostgreSQL Global Development Group
Paperback (6"x9"), 454 pages
ISBN 9781906966041
RRP £14.95 ($19.95)

Sales of this book support the PostgreSQL project! Get a printed copy>>>

7.7.3 POSIX Regular Expressions

Table 7-11 lists the available operators for pattern matching using POSIX regular expressions.

Table 7-11: Regular Expression Match Operators
Operator Description
~ Matches regular expression, case sensitive
e.g. 'thomas' ~ '.*thomas.*'
~* Matches regular expression, case insensitive
e.g. 'thomas' ~* '.*Thomas.*'
!~ Does not match regular expression, case sensitive
e.g. 'thomas' !~ '.*Thomas.*'
!~* Does not match regular expression, case insensitive
e.g. 'thomas' !~* '.*vadim.*'

POSIX regular expressions provide a more powerful means for pattern matching than the LIKE and SIMILAR TO operators. Many Unix tools such as egrep, sed, or awk use a pattern matching language that is similar to the one described here.

A regular expression is a character sequence that is an abbreviated definition of a set of strings (a regular set). A string is said to match a regular expression if it is a member of the regular set described by the regular expression. As with LIKE, pattern characters match string characters exactly unless they are special characters in the regular expression language--but regular expressions use different special characters than LIKE does. Unlike LIKE patterns, a regular expression is allowed to match anywhere within a string, unless the regular expression is explicitly anchored to the beginning or end of the string.

Some examples:

'abc' ~ 'abc'    true
'abc' ~ '^a'     true
'abc' ~ '(b|d)'  true
'abc' ~ '^(b|c)' false

The POSIX pattern language is described in much greater detail below.

The substring function with two parameters, substring(string from pattern), provides extraction of a substring that matches a POSIX regular expression pattern. It returns null if there is no match, otherwise the portion of the text that matched the pattern. But if the pattern contains any parentheses, the portion of the text that matched the first parenthesized subexpression (the one whose left parenthesis comes first) is returned. You can put parentheses around the whole expression if you want to use parentheses within it without triggering this exception. If you need parentheses in the pattern before the subexpression you want to extract, see the non-capturing parentheses described below.

Some examples:

substring('foobar' from 'o.b')     oob
substring('foobar' from 'o(.)b')   o

The regexp_replace function provides substitution of new text for substrings that match POSIX regular expression patterns. It has the syntax regexp_replace(source, pattern, replacement [, flags ]). The source string is returned unchanged if there is no match to the pattern. If there is a match, the source string is returned with the replacement string substituted for the matching substring. The replacement string can contain \n, where n is 1 through 9, to indicate that the source substring matching the n'th parenthesized subexpression of the pattern should be inserted, and it can contain \& to indicate that the substring matching the entire pattern should be inserted. Write \\ if you need to put a literal backslash in the replacement text. (As always, remember to double backslashes written in literal constant strings, assuming escape string syntax is used.) The flags parameter is an optional text string containing zero or more single-letter flags that change the function's behavior. Flag i specifies case-insensitive matching, while flag g specifies replacement of each matching substring rather than only the first one. Other supported flags are described in Table 7-19.

Some examples:

regexp_replace('foobarbaz', 'b..', 'X')
                                   fooXbaz
regexp_replace('foobarbaz', 'b..', 'X', 'g')
                                   fooXX
regexp_replace('foobarbaz', 'b(..)', E'X\\1Y', 'g')
                                   fooXarYXazY

The regexp_matches function returns a text array of all of the captured substrings resulting from matching a POSIX regular expression pattern. It has the syntax regexp_matches(string, pattern [, flags ]). The function can return no rows, one row, or multiple rows (see the g flag below). If the pattern does not match, the function returns no rows. If the pattern contains no parenthesized subexpressions, then each row returned is a single-element text array containing the substring matching the whole pattern. If the pattern contains parenthesized subexpressions, the function returns a text array whose n'th element is the substring matching the n'th parenthesized subexpression of the pattern (not counting “non-capturing” parentheses; see below for details). The flags parameter is an optional text string containing zero or more single-letter flags that change the function's behavior. Flag g causes the function to find each match in the string, not only the first one, and return a row for each such match. Other supported flags are described in Table 7-19.

Some examples:

SELECT regexp_matches('foobarbequebaz', '(bar)(beque)');
 regexp_matches
----------------
 {bar,beque}
(1 row)

SELECT regexp_matches('foobarbequebazilbarfbonk', 
  '(b[^b]+)(b[^b]+)', 'g');
 regexp_matches
----------------
 {bar,beque}
 {bazil,barf}
(2 rows)

SELECT regexp_matches('foobarbequebaz', 'barbeque');
 regexp_matches
----------------
 {barbeque}
(1 row)

It is possible to force regexp_matches() to always return one row by using a sub-select; this is particularly useful in a SELECT target list when you want all rows returned, even non-matching ones:

SELECT col1, (SELECT regexp_matches(col2, '(bar)(beque)')) 
  FROM tab;

The regexp_split_to_table function splits a string using a POSIX regular expression pattern as a delimiter. It has the syntax regexp_split_to_table(string, pattern [, flags ]). If there is no match to the pattern, the function returns the string. If there is at least one match, for each match it returns the text from the end of the last match (or the beginning of the string) to the beginning of the match. When there are no more matches, it returns the text from the end of the last match to the end of the string. The flags parameter is an optional text string containing zero or more single-letter flags that change the function's behavior. regexp_split_to_table supports the flags described in Table 7-19.

The regexp_split_to_array function behaves the same as regexp_split_to_table, except that regexp_split_to_array returns its result as an array of text. It has the syntax regexp_split_to_array(string, pattern [, flags ]). The parameters are the same as for regexp_split_to_table.

Some examples:

SELECT foo FROM regexp_split_to_table('the quick brown fox 
  jumped over the lazy dog', E'\\s+') AS foo;
  foo
--------
 the
 quick
 brown
 fox
 jumped
 over
 the
 lazy
 dog
(9 rows)

SELECT regexp_split_to_array('the quick brown fox jumped over 
  the lazy dog', E'\\s+');
              regexp_split_to_array
------------------------------------------------
 {the,quick,brown,fox,jumped,over,the,lazy,dog}
(1 row)

SELECT foo FROM regexp_split_to_table('the quick brown fox', 
  E'\\s*') AS foo;
 foo
-----
 t
 h
 e
 q
 u
 i
 c
 k
 b
 r
 o
 w
 n
 f
 o
 x
(16 rows)

As the last example demonstrates, the regexp split functions ignore zero-length matches that occur at the start or end of the string or immediately after a previous match. This is contrary to the strict definition of regexp matching that is implemented by regexp_matches, but is usually the most convenient behavior in practice. Other software systems such as Perl use similar definitions.

ISBN 9781906966041The PostgreSQL 9.0 Reference Manual - Volume 1A - SQL Language ReferenceSee the print edition