- publishing free software manuals
The PostgreSQL 9.0 Reference Manual - Volume 1A - SQL Language Reference
by The PostgreSQL Global Development Group
Paperback (6"x9"), 454 pages
ISBN 9781906966041
RRP £14.95 ($19.95)

Sales of this book support the PostgreSQL project! Get a printed copy>>>

6.5.4 Interval Input

interval values can be written using the following verbose syntax:

[@] quantity unit [quantity unit...] [direction]

where quantity is a number (possibly signed); unit is microsecond, millisecond, second, minute, hour, day, week, month, year, decade, century, millennium, or abbreviations or plurals of these units; direction can be ago or empty. The at sign (@) is optional noise. The amounts of the different units are implicitly added with appropriate sign accounting. ago negates all the fields. This syntax is also used for interval output, if IntervalStyle is set to postgres_verbose.

Quantities of days, hours, minutes, and seconds can be specified without explicit unit markings. For example, '1 12:59:10' is read the same as '1 day 12 hours 59 min 10 sec'. Also, a combination of years and months can be specified with a dash; for example '200-10' is read the same as '200 years 10 months'. (These shorter forms are in fact the only ones allowed by the SQL standard, and are used for output when IntervalStyle is set to sql_standard.)

Interval values can also be written as ISO 8601 time intervals, using either the “format with designators” of the standard's section or the “alternative format” of section The format with designators looks like this:

P quantity unit [ quantity unit ...] [ T [ quantity unit ...]]

The string must start with a P, and may include a T that introduces the time-of-day units. The available unit abbreviations are given in Table 6-16. Units may be omitted, and may be specified in any order, but units smaller than a day must appear after T. In particular, the meaning of M depends on whether it is before or after T.

Table 6-16: ISO 8601 interval unit abbreviations
Abbreviation Meaning
Y Years
M Months (in the date part)
W Weeks
D Days
H Hours
M Minutes (in the time part)
S Seconds

In the alternative format:

P [ years-months-days ] [ T hours:minutes:seconds ]

the string must begin with P, and a T separates the date and time parts of the interval. The values are given as numbers similar to ISO 8601 dates.

When writing an interval constant with a fields specification, or when assigning a string to an interval column that was defined with a fields specification, the interpretation of unmarked quantities depends on the fields. For example INTERVAL '1' YEAR is read as 1 year, whereas INTERVAL '1' means 1 second. Also, field values “to the right” of the least significant field allowed by the fields specification are silently discarded. For example, writing INTERVAL '1 day 2:03:04' HOUR TO MINUTE results in dropping the seconds field, but not the day field.

According to the SQL standard all fields of an interval value must have the same sign, so a leading negative sign applies to all fields; for example the negative sign in the interval literal '-1 2:03:04' applies to both the days and hour/minute/second parts. PostgreSQL allows the fields to have different signs, and traditionally treats each field in the textual representation as independently signed, so that the hour/minute/second part is considered positive in this example. If IntervalStyle is set to sql_standard then a leading sign is considered to apply to all fields (but only if no additional signs appear). Otherwise the traditional PostgreSQL interpretation is used. To avoid ambiguity, it's recommended to attach an explicit sign to each field if any field is negative.

Internally interval values are stored as months, days, and seconds. This is done because the number of days in a month varies, and a day can have 23 or 25 hours if a daylight savings time adjustment is involved. The months and days fields are integers while the seconds field can store fractions. Because intervals are usually created from constant strings or timestamp subtraction, this storage method works well in most cases. Functions justify_days and justify_hours are available for adjusting days and hours that overflow their normal ranges.

In the verbose input format, and in some fields of the more compact input formats, field values can have fractional parts; for example '1.5 week' or '01:02:03.45'. Such input is converted to the appropriate number of months, days, and seconds for storage. When this would result in a fractional number of months or days, the fraction is added to the lower-order fields using the conversion factors 1 month = 30 days and 1 day = 24 hours. For example, '1.5 month' becomes 1 month and 15 days. Only seconds will ever be shown as fractional on output.

Table 6-17 shows some examples of valid interval input.

Table 6-17: Interval Input
Example Description
1-2 SQL standard format: 1 year 2 months
3 4:05:06 SQL standard format: 3 days 4 hours 5 minutes 6 seconds
1 year 2 months 3 days 4 hours 5 minutes 6 seconds Traditional Postgres format: 1 year 2 months 3 days 4 hours 5 minutes 6 seconds
P1Y2M3DT4H5M6S ISO 8601 “format with designators”: same meaning as above
P0001-02-03T04:05:06 ISO 8601 “alternative format”: same meaning as above
ISBN 9781906966041The PostgreSQL 9.0 Reference Manual - Volume 1A - SQL Language ReferenceSee the print edition