- publishing free software manuals
 GNU Scientific Library Reference Manual - Third Edition (v1.12) by M. Galassi, J. Davies, J. Theiler, B. Gough, G. Jungman, P. Alken, M. Booth, F. RossiPaperback (6"x9"), 592 pages, 60 figuresISBN 0954612078RRP £24.95 (\$39.95)

## 19.11 The Landau Distribution

Function: double gsl_ran_landau (const gsl_rng * r)
This function returns a random variate from the Landau distribution. The probability distribution for Landau random variates is defined analytically by the complex integral,
p(x) = (1/(2 \pi i)) \int_{c-i\infty}^{c+i\infty} ds exp(s log(s) + x s)


For numerical purposes it is more convenient to use the following equivalent form of the integral,

p(x) = (1/\pi) \int_0^\infty dt \exp(-t \log(t) - x t) \sin(\pi t).

Function: double gsl_ran_landau_pdf (double x)
This function computes the probability density p(x) at x for the Landau distribution using an approximation to the formula given above.

 ISBN 0954612078 GNU Scientific Library Reference Manual - Third Edition (v1.12) See the print edition